Skip to content
BrilliantCode.net

BrilliantCode.net

  • ML
  • 架站彙整
  • Python & Numpy
  • Ubuntu建置AI開發環境
  • Cookie Policy

Chain Rule

Backpropagation Tutorial Gradient Descent, Chain Rule
Machine Learning 教學 

Backpropagation(BP) 倒傳遞法 #1 工作原理與說明

2019-02-212020-05-25 Andy Wang 1 Comment Backpropagation, Chain Rule, Gradient Descent, Machine Learning, Optimization Algorithm

本篇會介紹在機器學習(machine learning)與深度學習(deep learning)領域裡很流行的倒傳遞法(Back Propagation/ Backpropagation, BP)的精髓:梯度下降法(Gradient Descent)、連鎖率(Chain Rule)

Read more


The latest posts

  • rsync – Linux常用指令#03
  • Shell 基礎 2-判斷指令執行成功
  • Apache進階設定(2)-KeepAlive
  • MySQL #01 binary logs 設定與屬性
  • WordPress 不斷重新導向
  • WordPress 資料庫大小猛增
  • CentOS 8 架站教學彙整
  • WordPress: SSL Failed: WordPress 回報無 SSL 支援
  • Shell 備份 網站資料, config, 資料庫
  • Shell 基礎 1-宣告, 變數, 函數, 確認檔案存在
  • CentOS 8 安裝與設定 MySQL 8, phpMyAdmin 4.9
  • CentOS 8 Apache 2.4, PHP7.3 安裝與設定
  • CentOS 8 基礎設定(時區, EPEL, SSH/sFTP, SEManage, wget)
  • Numpy 筆記-#02 另存變數為 .npz
  • Numpy 筆記-#01 卷積神經網路的Padding

Tags

Anaconda Apache Backpropagation Bitbucket build web server CentOS Certbot CNN Computer Vision cron CUDA Docker Drupal FreeNAS FTP Server Git Gradient Descent Homebrew htaccess https Linode Linux Logistic Regression Mac Machine Learning mount MySQL Neural Network NextCloud NumPy Optimization Algorithm php phpMyAdmin Python SELinux Shell SMB SSH SSL Sublime Tensorflow Ubuntu VPS Wordpress yum

About

若有任何疑問,歡迎來信。
Email: [email protected]

Copyright © 2022 BrilliantCode.net. All rights reserved.
Theme: ColorMag by ThemeGrill. Powered by WordPress.